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Accelerators are Crucial to Scientific Discoveries in Particle Physics, 
Materials Science, Chemistry, and Biological Science

“A new generation of 
accelerators capable of 
generating beams of 
exotic radioactive nuclei 
aims to simulate the 
element-building process 
in stars and shed light on 
nuclear structure”

“Biologists and 
other researchers 
are lining up at 
synchrotrons to 
probe materials 
and molecules 
with hard x-rays”

“Violated 
particles 
reveal quirks 
of antimatter”

• Accelerators for high energy physics

• Accelerators for nuclear physics

• Synchrotron light sources

• Spallation neutron sources
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CERN site showing LEP (Large 
Electron Positron Collider), the 
largest accelerator in the world.    
Future site of the Large Hadron 
Collider (LHC)

The Advanced Light Source (ALS) 
at Lawrence Berkeley National 
Laboratory.
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*A single quad does not focus both transverse directions simultaneously

– an x-focusing quad is y-defocusing (and vice-versa)

– a sequence of quads of opposite polarity can focus in both planes (just as a 
sequence of convex/concave lenses may guide light)

– example: “FODO” lattice = x-focus,drift,x-defocus,drift,...

Accelerator Components

•Examples of beamline elements
§ rf cavities (acceleration)

§ magnetic dipole (bending)

§ magnetic quadrupole* (transverse focusing)

§ magnetic multipoles: sextupole, octupole,…

(influences nonlinear behavior)

•A sequence of beamline elements = a beamline or lattice

Sextupole

Quadrupole
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Contributions of accelerators have significant 
economic impact and greatly benefit society

• Medical isotope production

• Electron microscopy

• Accelerator mass spectrometry

• Medical irradiation therapy

• Ion implantation

• Beam lithography

• Transmutation of waste

• Accelerator-driven energy 
production

• Hydrodynamic imaging
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Opportunities at Next-Generation 
Accelerator Facilities

Exploring physics beyond the
Standard Model. Are there

new particles? New interactions?

Research with exotic nuclei:
The nature of nucleonic matter; origin of 
the elements; tests of the Standard Model

Research using intense, ultra-short pulses of
x-ray radiation (4th generation light source):

fundamental quantum mechanics; atomic,
molecular, and optical physics; chemistry;

materials science; biology



Issues for Next-Generation Accelerators

• Cost of leading-edge accelerators: 
several billion $

• Design decisions can have huge 
consequences

§ Supercollider  example:

beam pipe aperture change  
from 3cm to 4cm cost est. $1B

• Existing technology facing barriers
§ Falling off “Livingston Curve”

Panofsky and Breidenbach,
Rev. Mod. Phys. 71, #2 (1999)
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• Present accelerators: Maximize investment by
§ optimizing performance
§ expanding operational envelopes

§ increasing reliability and availability

• Next-generation accelerators
§ better designs
§ feasibility studies

§ Facilitate important design decisions

§ completion on schedule and within budget

• Accelerator science and technology
§ help develop new methods of acceleration
§ explore beams under extreme conditions

High Performance Computing  is Playing a Major 
Role in Accelerator Science & Technology
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Parallel Code Development

• Electromagnetics (EM)

Maxwell’s equations
§ Eigenmode

§ Time-domain

§ Statics

• Beam Dynamics

Hamilton; Vlasov/Poisson
§ High intensity beams in linacs & rings

• Coupled EM/beams

Vlasov/Maxwell
§ Laser/Plasma-based accelerators



SLAC is developing a parallel 
eigensolver: Omega3P

Calculation of modes in entire structure has begun

Cavity field Manifold field

12 cell
stack
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Plasma Wakefield Accelerator
Isosurface contours of the accelerating structure in a PWFA
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High Intensity Beam Dynamics

• Beam losses are a key issue for accelerators 
operating at the high-intensity frontier
§ Fermilab booster, Brookhaven AGS, SNS accumulator

§ Future proton drivers for neutrino factories, muon colliders

• Need to understand, control beam halos



Beam Dynamics: Old vs. New Capability
• 1980s: 10K particle, 2D serial simulations
• Early 1990s: 10K-100K, 2D serial simulations

• 2000: 100M (5-10 hrs on 256 PEs);
more realistic models

LEDA halo expt; 100M particles
Visualization of beam distribution

function in phase space
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We are using Split-Operator Methods to Develop 
Parallel Codes to Model High Intensity Beams

• 3D Parallel Particle-In-Cell Code to solve the Vlasov/Poisson equations

• Philosophy:

§ Do not take tiny steps to push ~100M particles

§ Do take tiny steps to compute transfer maps; then push w/ maps

Split-Operator Methods

M=Mext M=Msc

H=Hext+Hsc

M(t)= Mext(t/2) Msc(t) Mext(t/2) + O(t3)

Magnetic
Optics

Parallel
Multi-Particle

Simulation

H=Hext H=Hsc
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Hamiltonian description of charged particle 
dynamics in electromagnetic fields
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• Cartesian w/ t as the independent variable:

• Cartesian w/ z as the independent variable:

• Usually this is expanded about a reference trajectory
– perturbation theory performed for small deviations 

around the reference trajectory

– results in Hamiltonians w/ 10s, 100s, or 1000s of terms
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Hamiltonian dynamics, cont.
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• Different beamline elements have different potentials

• Example: a quadrupole w/ gradient g(z):
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Transfer Maps

M

ζin ζfin

ζ=(x,px,y,py,z,pz)

fin inMζ ζ=
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Lie Operators and Lie Transformations

3
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Lie Operator

Lie Transformation:

: : 21
: : : : ...

2
fe g g f g f g= + + +

Note well: If Pn is a homogenous
polynomial of degree n, then, when
its associated Lie operator is
applied to a phase space variable,
:Pn:ζa is of degree n-1 
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Symplectic Mappings

• Hamilton’s equations:

: :
ς

ς= −
d

H
dt

: :e−= t HM

• Lie transformations are symplectic mappings. They 
provide a natural and powerful formalism to describe, 
parameterize, and manipulate symplectic maps.

• Formal solution (time-independent case):
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Representation of Transfer Maps

6 6 6

1 , 1 , , 1

...fin in in in in in in
a ab b abc b c abcd b c d

b b c b c d

R T Uζ ζ ζ ζ ζ ζ ζ
= = =

= + + +∑ ∑ ∑

32 4: :: : : :...ff fM e e e=

Taylor Series:

Lie Representation: (Dragt & Finn)

where fn is a homogeneous polynomial of degree n
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Comparison of the Methods
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Lie Polynomials
1 x
2 px

3 y
4 py

5 t
6 pt

7 x2

8 xpx

9 xy
10 xpy

… …
26 tpt

27 pt
2

28 x3

29 x2px

30 x2y
31 x2py

… …
82 pt

2t
83 pt

3

84 x4

85 x3px

86 x3y
87 x3py

… …
208 pt

3t
209 pt

4

3rd order monomials:
lowest order 
aberrations

(sextupoles,…)

4th order monomials:
octupoles,repeated 

sextupoles,…

2nd order monomials:
linear dynamics

(paraxial ray optics)

1st order monomials:
displacements
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Lie Methods have Revolutionized the Design 
and Analysis of Particle Accelerators

• Introduced by Alex Dragt ~ 1980
§ Early response from accelerator community was: fancy 

mathematics, too complicated

§ Now seen as an indispensable tool for high order optical design

§ Normal form techniques of Dragt and Forest essential for 
analysis of circular machines

• Related developments
§ Automatic differentiation techniques (Berz) – enables 

computations of arbitrarily high order maps

§ Symplectic integration techniques
– Ruth, Forest, Yoshida, Suzuki, Laskar,…
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If we are interested in long-term behavior in a Hamiltonian 
system (particle in an accelerator, gravitationally interacting 
system of masses,…) no modern dynamicist would write 
down equations of motion,

and develop an integrator by inspection based on: 

, /
dx dv

v F m
dt dt

= =

1
1/2

n n
n

x x
v

t
+

+
−

=
∆

1/2 1/2 /n n
n

v v
F m

t
+ −−

=
∆

• OK for illustrative purposes

• What if the force is a complicated function of x,v?

• What if we are interested in high order, high accuracy integration?
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Philosophy

• The development of symplectic algorithms for Hamiltonian 
systems focuses on the Hamiltonian/Lagrangian or 
evolution operator.

We should not attempt to develop algorithms for 
Hamiltonian systems by focusing on the 

equations of motion

l But this is exactly how the most widely used method for 
solving Maxwell’s equations (FDTD) has been developed!
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Symplectic Discretizations for Maxwell’s Equations

• Involves discretization of the Hamiltonian density

( )2 21
( , ) 2

2
H A E A E J A dx= ∇× + −∫ i

l Previous work by Xiaowu Lu and Rudolf Schmid, “Symplectic 
Discretizations for Maxwell’s Equations,” from the Int’l Conf. On New 
Applications of Multisymplectic Field Theories, Salamanca, Spain, Sept. 
1999. See also http://www.mathcs.emory.edu/~rudolf

§ Proposes an alternative to the usual approach of discretization in space 
followed by time-integration using a symplectic integrator.

(µ=ε=1)



31

Recent work of Kole, Figge, and De Raedt
(Phys. Rev. E. 64, 0667045, Nov 2001)

Expresses Maxwell’s equations as

( ) ( )t H t
t

∂
Ψ = Ψ

∂
where H is skew symmetric and Ψ=(µ1/2ΗΗ(t),ε1/2ΕΕ(t)). Hence 

( ) (0)tHt eΨ = Ψ
where U(t)=etH is orthogonal.

In this approach, the discretized matrix H is separated into skew symmetric 
parts He+Ho so that eHe and eHo are also orthogonal. Then a Suzuki/Yoshida 
product is used to approximate U(t). Therefore the evolution operator is a 
product of orthogonal matrices, and is unconditionally stable.
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Example: 1D Wave Equation

• Kole/Figge/De Raedt approach: Dynamical variables 
are X and Y, where

2 2
2

2 2

u u
v

t x

∂ ∂
=

∂ ∂

X Y
v

t x

∂ ∂
=

∂ ∂
Y X

v
t x

∂ ∂
=

∂ ∂
l Spatial derivatives of X and Y are approximated by finite 

differences on interleaved grids, then Ψ=(X,Y) is shown to 
satisfy ∂Ψ/ ∂t=H Ψ, where the matrix H is given by [β=1/(v ∆x)]

1, 1 1 1, 2 1 2 2 1( ) ( )T T T T
i i i i i i i i i i i i

odd

H β β+ + + + + + + + + = − + − ∑ e e e e e e e e

l A product integrator is obtained by writing H as a sum of NxN 
matrices each consisting of 2x2 blocks on the diagonal
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Symplectic approach #1: Use finite difference discretization 
of the the spatial derivatives in the wave equation

• This equation can be derived from the Hamiltonian (v2=T/m),

2
2 1 1

2 2

2k k k ku u u u
v

t h
+ +∂ − +

=
∂

2 2
12

1
( )

2 2k k k
k k

T
H p u u

m h += + −∑ ∑
l This also works for a 4th order approximation to ∂2/∂x2
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Symplectic approach #2: Discretize the Lagrangian Density

• We can discretize using finite element basis functions. The 
result is that L=ΣLk, where, for linear finite elements,

2 2
1 1

2 2

u u
L T

t x
ρ

 ∂ ∂   = −    ∂ ∂     
∫

2 2 2
1 1 12

( ) ( )
6 2k k k k k k k

T
L u u u u u u

h

ρ
+ + += + + − −& & & &

l Can also be done for quadratic and higher order elements

l Problem: To obtain the discrete Hamiltonian, we have to 
obtain the corresponding momenta. This requires solving a 
sparse linear system whose solution is dense.
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Symplectic approach #3: Discretize the Hamiltonian Density

• We can discretize using finite element basis functions. The 
result is that H=ΣHk, where, for linear finite elements,

2
21 1

2 2

u
H p T

xρ

 ∂ = +  ∂   
∫

2 2 2
1 1 12

1
( ) ( )

6 2k k k k k k k

T
H p p p p u u

hρ + + += + + + −

l Can also be done for quadratic and higher order elements

l Problem: Quadratic case appears to have poor dispersive 
characteristics, not even the correct behavior for long λ
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Comparison of Eigenfrequencies

mode #

|(ω-ωexact)|/ ωexact
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Comparison of Eigenfrequencies (log plot)

mode #

|(ω-ωexact)|/ ωexact
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Dispersion Curves

nπ/N

ω (rad/sec)
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Closing Thoughts

• Many possible models… which is “best”?
§ Alternative to FEM would be to construct a model w/ desired properties

– The discrete eigenvalues should approach eigenvalues of the continuous 
system as ∆x tends to zero.

– The dispersion curve should be “near” the exact curve
l Should probably place greater emphasis on accuracy of low freq modes

– “Best” is a balance of numerical properties and Hamiltonian bandwidth


